Bilinear spherical maximal function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bilinear Maximal Functions

The bilinear maximal operator defined below maps L × L into L provided 1 < p, q <∞, 1/p+ 1/q = 1/r and 2/3 < r ≤ 1. Mfg(x) = sup t>0 1 2t ∫ t −t |f(x+ y)g(x− y)| dy In particular Mfg is integrable if f and, g are square integrable, answering a conjecture posed by Alberto Calderón. 1 Principal Results In 1964 Alberto Calderón defined a family of maximal operators by Mfg(x) = sup t>0 1 2t ∫ t −t ...

متن کامل

On Maximal Spherical Codes I

We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactl...

متن کامل

The Bilinear Maximal Function Maps into L P for 2=3 < P 1

The bilinear maximal operator de ned below maps L L into L provided 1 < p; q <1, 1=p+ 1=q = 1=r and 2=3 < r 1. Mfg(x) = sup t>0 1 2t Z t t jf(x+ y)g(x y)j dy In particular Mfg is integrable(!) if f and, g are square integrable, answering a conjecture posed by Alberto Calder on. 1 Principal Results In 1964 Alberto Calder on de ned the maximal operator Mfg(x) = sup t>0 1 2t Z t t jf(x y)g(x y)j d...

متن کامل

Spherical Maximal Operators on Radial Functions

where dσ is the rotationally invariant measure on Sd−1, normalized such that σ(Sd−1) = 1. Stein [5] showed that limt→0Atf(x) = f(x) almost everywhere, provided f ∈ L(R), p > d/(d − 1) and d ≥ 3. Later Bourgain [1] extended this result to the case d = 2. If p ≤ d/(d − 1) then pointwise convergence fails. However if {tj}j=1 is a fixed sequence converging to 0 then pointwise convergence may hold f...

متن کامل

Image Dehazing using Bilinear Composition Loss Function

In this paper, we introduce a bilinear composition loss function to address the problem of image dehazing. Previous methods in image dehazing use a two-stage approach which first estimate the transmission map followed by clear image estimation. The drawback of a two-stage method is that it tends to boost local image artifacts such as noise, aliasing and blocking. This is especially the case for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2018

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2018.v25.n5.a1